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1 Introduction

Much research has been conducted in the last few decades on nonlinear degenerate parabolic
problems, detected in mathematics, biology, chemistry and physics Nachaoui et al.| (2021);
Rasheed et al.| (2021); [Yakub et al.|(2021)). For example, the flow through a porous medium in
a turbulent regime is described by

00 .
E + divv = 0,

and Darcy’s law
v= _K(G) grad @(0),

where 6(z,t) is the volumetric moisture content, k() is the hydraulic conductivity, and the total
potential ¢ is given by
¢(0) = ¥(0) + 2,

with ¢(6) the hydrostatic potential and z the gravitational potential. In turbulent regimes, the
flow rate is different from that which can be predicted by the Darcy’s law, and so several authors
have proposed a nonlinear relation between v and K () grad ¢.

[v|97%v = —K(0)grad 6(0), q > 2.

If e denotes the unit vector in the vertical direction, we obtain

O v | V() ~ K(O)e 72 (Vpl0) ~ K(0)e) =0,

where

0
ﬂ@=AKbW@%,p=(’-
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As we know there is no general theory that concerns the solvability of nonlinear parabolic dif-
ferential equations, however, many researchers have investigated the existence and the stability
of different types of solutions of nonlinear degenerate parabolic problems due to their applica-
tions. For example |Blanchard & Porrettal (2001), have studied the existence and the stability
of a renormalized solution of a nonlinear parabolic equation with a local quadratic term with
respect to the gradient and measure initial data. In El Hachimi et al. | (2010)) have explained
the existence of entropy solutions of the nonlinear parabolic problem using a time discretization
of the continuous problem by the Euler forward scheme. In Xu & Zho (2005]), Xu and Zho es-
tablished the existence and uniqueness of weak solutions for the initial-boundary value problem
of a fourth-order nonlinear parabolic equation. The literature about the results of nonlinear
parabolic equations is immense and it is very difficult to have a complete picture, we refer the
readers to see for example Abassi et al. (2008); |Abassi & El Hachimi (2007)); Diaz & Thelin
(1994); Blanchard & Redwane| (1998).

Motivated by the physical models, we have carried out this study of the weak solutions of a
nonlinear degenerate parabolic problem with Dirichlet type boundary conditions

Ou _ div ®(Vu—0(u))+a(u)=f in Q:=]0;T[xQ,

ot
u=0 on T :=]0;T[x09, (1)
u(.,0) = ug in Q,

where Q € RY (N > 2) is a bounded open set, T is a fixed positive number,Vu is the gradient of
u, f € L>®(Q), o and 6 are the functions defined on R and satisfied suitable assumptions, and

O(u) = [ufPPp,  YpeRYN.

Problems like appear in a variety of different settings (see |Bermudez et al. (1984), Diaz
& Herrero| (1981), [Van Duijn & Hilhorst| (1987)). Besides that, it is worth mentioning that
the problem for the elliptic case with Neumann conditions has been studied in |Abassi et al.
(2008). For the Dirichlet type boundary conditions, many particular cases have been treated in
many works. For example, [M. Tsutsumil (1972) investigated, for § = 0 and a(u) = u'** where
s > 0, the existence and nonexistence of solutions for using Dirichlet boundary conditions.
In Bhuvaneswari et al.| (2012) the authors established the existence of weak solutions for the
degenerate p-Laplacian parabolic problem using a semi-discretization process. Recently |Cianchi
& Mazya | (2020), have proved, for # = 0 and a(u) = 0, that the equation has a unique
approximable solution.

To prove the existence and uniqueness of the weak solutions, we use a variational method
with the following semi-discretization equation

% —div ®(Vug — 0(ug)) + o (up) = [fln (k= 1) k) in Q, -
uk’|8§2:07 k,:l"”’n’

where h > 0, n is a positive integer such that h = %, and

1 t+h
M@= [ f@ndn
t
As we know, many of these partial differential equations can be derived in a variational way,
i.e. via minimization of an ’energy’ functional. Recently, there has been increasing interest from
applied analysts in applying the models and techniques from variational methods and partial
differential equations to tackle problems in data science, see Trillos & Murray| (2017); [Elmoataz
et al. (2017); Bernal et al.| (2017)). Moreover, the variational method and the semi-discretization
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process have been used by several authors in different PDEs, see for example |[Abassi & El
Hachimi (2007); [Benzekri & El Hachimi (2003); Eden et al.| (1990); |Chen, (2017); |Xu & Zho
(2005); |Zhang & Zhou (2010).

The paper is planned in the following way. In section 2, we state some preliminary results and
tools, which are needed to establish our existence result. In section 3, we prove the existence of
weak solutions of semi-discrete problem using variational method. In section 4, we establish
the existence of weak solutions of the problem using semi-discretization process.

2 Preliminaries and notations

We begin by recalling some relevant definitions and results from calculus and measure theory
that we will need throughout this article. Let £ be a smooth bounded domain in RY | diam/(£2)
represents its diameter of 2, the norm in LP() is denoted by |[[|zr(q), [[llw1r(q) denotes the
norm in the Sobolev space W1P(Q), C° () denotes the space of all functions with compact
support in €2 with continuous derivatives of arbitrary order, and WO1 P (Q) represents the closure
C () in WP (Q). We recall that the dual space of the Sobolev spaces VVO1 P (Q) is equivalent
to WL (Q), where p/ is the conjugate of p ie., p = —£-. For a Banach space X and a < b,
LP(a;b; X) is the space of measurable functions u : [a; b]P'—> X such that

b 1/p
[ull o (a,p;x) = </ !u(t)||§<dt> < 0.

Throughout this paper, we will use the following Poincare inequality (see Lieberman (1991)),
Lemma 2.2), there exists a positive constant r = diam(£2) such that
r
lllze() = 5 IVUllLr(e)- 3)
We recall the following useful lemmas.

Lemma 1. (Abassi et al.| (2008)) Vp,v € RN and 1 < p < oo
1 1 _
“|plP = =P < a7 (= v).
p p

Lemma 2. (Boccado & Croce (2014)) Let f, be a sequence of function and f be a function in
LP(Q2), p > 1. Assume that

(1) fn is bounded in LP(S).

(2) fn— f a.e. in L

Then f, — f strong in L1, for every q € [1,p) and weakly in LP(Q).

Lemma 3. For p,v € RN and 1 < p < 0o, we have
(P2 = wP=2v) - (p—=v >) > 0

Lemma 4. Fora>0, b>0 and1 <p < oo, we have
(a+b)p§2p_1 (aP + bP).

3 Existence and uniqueness of solutions of
semi-discrete problem

To analyze the solutions of the semi-discrete problem , it suffices to determine existence of
weak solutions of the following elliptic problem

u — Up ) = i
— = div ® (Vu—0 () +a(u) = [fl(0) in O (4)

u=20 on O0f),
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under the given assumptions:

(H1) «is anon decreasing continuous real function defined on R such that
a(0) = 0 and there exists a positive constant A; such that |a (z)| < Aq|x]
foralleR,O<>\1<%.

(H) 6 is a continuous function from R to R such that #(0) = 0 and
|0(z) — 0(y)| < A2|z — y| for all (z,y) € R? and \g is a positive constant such that

0< A< %(l)%
2 diam(Q)\2/ " °
(Hs) feL>(Q).
Before we proceed to the proof of , we introduce the notion of a weak solution to (4]).

Definition 1. A function u € Wol’p(Q) N L%(Q) is called a weak solution of the problem if,
for any ¢ € Wol’p(Q) N L2(9), we have

[ et [ @ 0) Vot + [ atgtr= [ (70

In order to establish existence of solutions to the problem , we introduce the variation
problem

min{J(u) Ju € Wol’p Q)N LQ(Q)} ;
for

J(u): = % (u—uo)zdx+f1l/gﬁ(u)dx+2(u), (5)

where 8 and Z are functions defined by

t
t)::h/asds
/|Vu— |pdx—/|f]h 0)udz.

Solving the varational problem enables us to ensure the existence of weak solutions of the elliptic
problem . To do that, first we need the following result.

Lemma 5. Provided that (Hz) holds, there exists C' > 0 such that

1.p 2
Z(u pr/wu\pdw—cuu<>||L,,(m, Yu € Wy () N LA(Q).

Proof. Let u € Wol’p (2) N L%(Q). By applying Lemma || and the hypothesis (Hz), we get

1
|VulP = §|Vu —0(u)+0(u)?

1 1
S%VU—WMV+5WWHP

p2r1

p
1 2P
< Livu— o) + 22 pupp
p p
< vu—bwp+ L jup
— u — u —_— (U|".
<5 2p(diam ()7
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On the other hand, we have by

— 1/\vuyp dr < 1 /\vu— WlPde + +1/!Vu\pda:

ie.,

p2p+1 / VulPdz < L / Vi — 0 (u) Pda. (6)
This implies that

3
200) = iy [ 1Val? dat [ 171,0)ude.
We obtain by Holder’s, and Young’s inequalities

/ [11(0)udz
Q

< 1RO Lo 0 1wl o)

,
IO @) IVl oo
< eIVl 0y + C NFRONL (7)

IN

where € is a small positive number. Then, from @ and , we have

20> gz =) [ 1VuPdz = MO

Taking € = ]ﬁ, we get

20) = = [ [VuPde = C SO

which proves the statement. O
We are now able to determine existence of minimizer of the functional J.
Proposition 1. Provided that (Hi), and (Hz) hold, then the functional J has a minimizer
u e WP (Q) N L3(Q).
Proof. Let u € Wy () N L*(Q). By lemma we have

J(u) > 21}1/(u—u0) dr + — /ﬁ dx+/\Vu|pdx—C||[ 11 (0 )HLP(Q

On the one hand, by applying the hypothesis (H1), we obtain

1 A ,
JUZ* u—u Qdm_i U2d.’E—C f 0 p/
() =5 Q( 0) oh o 11O
! 1 2 ’
> _ L B v
2 o Q(u up)*dw — - dz = C|[[f1n(0)17, g
1 ¢ .
=, (u—2ug)* dz — o ) ug dw — ClOIT, ) (8)

Hence

1 2 p/
I 2 5 [ adde = CILOI,

380



L. HMIDOUCH et al.: WELL-POSEDNESS OF WEAK SOLUTION FOR NONLINEAR PARABOLIC...

This implies that
1

/ 1
_ 2 rooo< i < —|luol|?2/en-
o7, 1wollz2(q) = ClILAR (O I, ) < uewgvpl(lslz{;mm(sz) J(u) < 5lluolzzo)

Then, we can find a minimizing sequence {u,,} C VVO1 P(Q) N L2 () such that

J (um) < J (uo) +1, (9)
and
lim J(up,) = inf J(u).
m—+co u€Wy P (Q)NL2(Q)
From and @D, we get
1 1 1
- m — 2up)?de — — [ wu3d / m|Pd
P Q(u up)“dx 2h/9u0 l‘—l—p2p Q|Vu |Pdx
/ 1
< CISO)Z, g + 57 H0l22(q) + 1 (10)
Since we have )
iu?” — 4k < (U — 2ug)?,

we obtain
1 2 1 P P 2 2
i lumlBao) + g il ) < CILE O 17,0, + 7 ol ooy + 1.

Hence, the above inequality shows that w,, is bounded in VVO1 P () N L2(£2). Since
VVO1 P (Q)N L%(Q) is reflexive, then we can find subsequence denotes u,,, and a function u € such
that u, — u in W,? (Q) N L2(Q).

Therefore
Uy — uweakly in LP (Q), L% (Q), (11)
Vu, — Vuweaklyin LP (), (12)
Uy, —  u a.ein Q. (13)

Next, we need to show that
linl}nf J (um) > J (u) .

Since u,, — u  a.e in 2, by Fatou’s Lemma, we have

1 1
h,,?l,ioréf o /Q (U — ug)? daz > ST (u— up)? d. (14)
So by hypothesis (H2), we get
|9 (um) | < >\2|um|7 (15)

witch implies that 6 is bounded in LP(2). Moreover, by the continuity of 6 we have
lim O(uy,) = 6(u).

m—r0o0

By applying Lemma [2| we obtain 6(u,,) — 0(u) weakly in LP(2).
We also have, from (12)), Vun, — 0(um) = Vu — 0(u) weakly in LP(€),
which gives

lim inf = / Vi — Ot Pl > ~ / IV — 6(u)Pda. (16)
Q PJa

m—00 p
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By hypothesis (Hp), we have
18 (um) | < == luml?,

which implies that 3 is bounded in L?(Q2). Since 3 is continuous, then

lim 5 (up) = 6 (u).

m— 00

Thus, by Lemma, we get

i 1 = l u)dz
Jim - [ fude =5 [ B (17)
And by , we obtain
im | [f1(0)umdz = / (15 (0)uda. (18)

Combining , , and , we deduce
liminf J(uy,) > J(u).

m— 00

Therefore u is a minimizer of the functional J in VVO1 P(Q)N L2 (Q). O
The following is a crucial result to establish existence of solutions to ({4]).

Lemma 6. For any u, v in Wol’p(Q) N L2 (), we have

o B(u+ tv) — B(u)
(1) }g%/ﬂ ” dz = /Qa(u)vdx.

_ p_ _ P
(i) Tim |Vu +tVo —0(u+ tv)|P — |Vu — 0(u)
t—0 Q pt

de = / O (Vu —0(u) - Vodz.
Q

Proof. (i) Consider, for ¢ €]0, 1],

G:[0,1]] —R

B (u+ tpv) — B (u)
ht '

[

The function G is continuous on [0,1], and differentiable on ]0,1]. By the Mean Value Theorem,
there exists v €]0, 1 such that
G(1)-G(0)=G(v).

Then

B (u+tv) — 5 (u)
ht

- %B’ (u+tyv) v = a (u + tyv)v.
Since 7, t €]0, 1], it implies that

o (e + t70) o] < M o] + Mol < Jullo] + o,
On the other hand

Ji S8 #0) = B (w)
t—0 ht

= a(u)v.

Hence, by the Dominated Convergence Theorem, we obtain

lim/gB(u+t21_ﬂ(u>dx:/§za(u)vdx.

t—0
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(ii) To show that

lim/ |Vu+tVo —0(u+tv)|P — [Vu — 0(u)|P

t—0 Jo pt
we define, for ¢ €]0, 1],

Gt(u,v) = Vu+tVo —0(u +tv), Fi(u,v) = Vu+tVv —0(u),
and let M be a function defined as
M:[0,1] — R

| Fopu(u, 0)|P — [Fo(u, 0P

pt ‘
The function M is continuous on [0,1] and differentiable on ]0,1], then again by the Mean Value
Theorem, there exists v €]0, 1[ such that

M (1)) = M (0)) = M' ().

dz = / & (Vu — 6(u) - Vode,
Q

p—

Thus
|Fy(u, v|P — | Fo(u, v|P
pt
Since v, t € [0, 1], then by Young’s inequalities and Lemma |4, we get
| Firy (1, 0772 (B (u,0)) - Vo < [y (u,0) P71V
Fo(uw )l Vol

= | Fyy (t, 0P 2By (w,0)) - Vo

< /
p p
< ol (IVU— 9(U)If’+ ItVVv!p) L Vol
p p
< oot (TSP Ve | (9P
p p
On the other hand
\Y tVu —0(u)|P — |Vu — 0(u)|P
%E)I(l] [Vu £tV (u]3t| [Vu = 6(u)] = (Vu—0(u) - Vo.
Hence, by the Dominated Convergence Theorem, we obtain
_ p_ p
/ [Vu+ Vo = 6(w)l” = [Vl /  (Vu — 6(u) - Vodz. (19)
tﬁO pt Q

To finish the proof of (ii), it suffices to show that
/ |Vu+tVo — 0(u+ tv)|P — [Vu+ tVo — 0(u)|P
pt
Using Lemma [1| and by applying Holder’s and Young’s inequalities, we get
[ Guluw, )l — | o)) < Gl ) PG, v) - (Galu,v) = Fu(u,0)
pt t

S/ |Gt(u,v)|P~ 1|0§u+tv)—9( )’dx

dxr = 0.

t—>0

pr
G110 g 16+ 20) = 00) 10
- t
ap
= G gy | 1B )~ 00
- 4t 4et

G, O PRCICIY
- 4t det
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Choosing € = t2, we have

4p

G, v) P — |Fy(u, o) 3G 0) gy Astllvll e
i - < T + T (20)
In the same manner, we prove that
4p.
Gy (u,v) [P — |Fy(u, )P _ —3tIF ()50 Astllvliieg
t = 4 a 4 ' (21)
Q
Then we obtain from and , ast — 0,
G » _|F P
Ifl]{lg)l’no/g | t(u,’l})‘ t ‘ t(“’ ,U)‘ dl’ — 0 (22)
Therefore Vu+tVu —0 tw)|P — |Vu +tVo — 0(u) P
lim/| ut Vv = Olut t)" = [Vu t 0V0 Z 00y, (23)
t—0 QO pt
Combining and , we obtain
tVov — 60 tv)[P — - P
lim/ [Vu+ Vo = 6(u + t)|P = [V = 6(u)] da::/fl)(Vu—H(u)'Vvdac.
t—0 Q pt o)
O]

Now we are ready to prove the existence of weak solutions of the problem .

Theorem 1. Assume that ug € L? (), and the hypotheses (H1),(Hs),(Hs) hold. Then the
problem has a unique weak solution.

Proof. Since u is a minimizer of the functional J in WO1 P(Q) N L?(Q), then for any v € V we
have

J(u+tv) — J (u)

0<
- t
Syl v B (ut tyv) = B (w)
_/Q . Ud$+t/ghdx+/9 - da
|V + tVv — O(u + tv)|P — [Vu — 0(u)[? -
+/Q pt dz /Q[f]h(o)vd:r. (24)

By letting ¢ — 0 and using Lemma [6] we deduce from (24)

OS/Q;L(u—uo)vdx—i-/ga(u)vda:jL/Q<I>(Vu—9(u)-Vvdx—/[f]h(O)vdm.

Q
Thus

/Q %@ — up)vde + /Q o(uyvdz + /Q O(Vu — O(u) - Vodz — /Q [£11(0)vdz = 0,

which completes our proof of existence of weak solutions of the problem .
The proof of the uniqueness of the solution of the equation is similar to the proof of Theorem
3.3 in [El Hachimi et al. | (2010]) and so it is omitted. O]

The following is an immediate consequence of Theorem

Corollary 1. Assume that ug € L? (), and the hypotheses (Hy), (Hz) and (Hs3) hold. Then
for each k =1,...,n, the problem (@ has a unique weak solution uy € W&’p(Q) N L%(Q).

Proof. For k = 1, by Theorem there exists a weak solution u; € Wol’p(ﬂ) N L*Q). By
induction, we deduce in the same manner that for £k = 2,...,n, the problem has a unique
weak solution uy, € W, P(€2) N L2(Q). O
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4 Main result

Before we sate the main result of this section, we introduce the notion of weak solutions to the

problem .

Definition 2. We say that uw € LP (0, T; Wol’p(Q)) NL> (0,T; L*(Q))NC(0,T; L*(2)) such that
%—? e ¥ (0, T; w1 (Q)) is a weak solution for the parabolic problem if and only if

T ou T T T
/ / god:rdt—l—/ / O (Vu — 9(u))chd:cdt+/ / a(u)pdrdt :/ / fedadt,
o Jo Ot 0o Jo o Jo o Jo

Vo e LP ( 0,T; ngP(Q)) N L= (0,T; L3(Q)).
Now the following is the main result of this paper.

Theorem 2. Assume that ug € L* (), and the hypotheses (Hi),(Hs),(Hs) hold. Then the
problem has a unique weak solution.

In order to prove the above theorem, we establish the following lemmas.

Definition 3. Fix n a positive integer and let h = % Fork=1,--- n, let ux be a solution of
(@. The approzimate solution uy of (@ is defined by

(up(z), t=0
ui(z), 0<t<h

n(® ) =4, G Dh <t < jh (25)

up(z), (n—1h<t<nh=T.

Lemma 7. Let up, as in . Under the assumptions of Theorem@ we have

1 9 1 1 9 T /
5 lun @z 07;22()) + port1 INuRllTo 0 .10 () < 5 luollz2(q) + C/o ||f(t)||‘2p/(9)dt-

Proof. Choosing uy, as a test function in the weak formulation of , we get

2
/ Yk 4z +/ O (Vug, — 0(ug)) - Vupde +/ a(ug)upde
Q h Q Q

- /Q[f]h(k— 1)ukdx+/gu’“‘hlwfdx. (26)
Since
Up—1U < uk_12+ uk,

then leads to

1 u?
5 /g; ﬁdx + /Q Q)(Vuk — 9(uk)) . Vukda; - /g;[.ﬂh(k — 1)ukdx + /Qoz(uk)ukdx

1 2
<3, e )
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Note that, by Lemma

B(Vuy, — O(uy,)) - Vug = [Vug — 0 (ug) [P72(Vug — 0 (ug,)) - Vg
= |V, — 0 (ug) P2 (Vug — 0 (ug)) - (Vg — 0(ug) + 0(uy))

1 1
> —|Vug — 0 (ug) [P — =10 (ug) |P.
pl K — 0 (ur) | p!(k)l

It follows that
1 [ u} 1 1
/ d:x+/ |Vuk—9(uk)|pdx—/[f]h(k:—1)ukd:n—/ |9(uk)|pdx+/a(uk)ukdx
2 Jah pJa 0 pJa Q

1 [ u?
< / k=1 g,
2 )y

Using Lemma ([B]), hypothesis (H), (Hz) and (3], we get

/ Uk gy +/\vu Pde — C ||[f]n (k — D)||” —1/yvu pdx<1/ui_1dx
k Q) portl f, VUK =2)q B

Hence

1 Ui P p, 1 uz—l
3 Q?dx‘*‘ 2p+1/!Vuky dz < C||[f]n (k —1)HLP,(Q)+2/Q 3 dz. (28)

Note that for each ¢ € |0, 7], there exists j € {0,...,n} such that ¢ €](j — 1)h, jh|. Therefore
by adding the inequality from k =1 to k = j, we obtain

1
/ Wdr 2p+1 Z/ Ve Pda <hCZH F-I, Q/QU%dLL’. (29)

Using the expression of uy, as in , we get

1 2 1 ! » 1 9 t o
gl + i [ [ V(P dodt < 3 ol +C [ 1F01 g

Thus

1 5 1 1 5 T /
3 lun(®)ll72(0) + popt INURllT o 0,110 (02)) < B [uollZ2(q) +C/O Hf(t)Hip/(Q) dt.

Now we are ready to prove Theorem 2]

Proof. By Corollary, for k = 1,...,n, there is a unique solution uy for . By using Lemma
we may choose a subsequence uy, such that

up, — u weakly * in L™ (0,T; L*(Q)), (30)

up, — w strongly in  LP (0,7 LP (0)), (31)

Vup — Vu weakly in LP(Q), (32)

O(Vup, — 0(up)) — € weakly in  LP' (0, Iy (Q)) . (33)

Next, we prove that u is a weak solution of the problem . Let p € CY(Q) with ¢(.,,T) =0
and ¢(x,t)r = 0. By taking ¢(z, kh) as test function, for each k € {1,...,n}, we have

/Quk_hukl(pdx + /Q (I)(Vuk — 0(uk)) -Vpdz + /Q Oé(uk)SOd:U = /Q[f]h ((k — 1) h) ¢(z, kh)dz.
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Summing up all the above equalities, we have

n—1 n
;/ ug (p(z, kh) — o(x, (k + 1)h)) da — /Quogo(a:, 0)dz + h; /Q aug)e(x, kh)dz

n

+ hZ/ (Vg — 0(up)) - Voo(z, kh)dz

-1 Q
-hy /Q Ik — DR)(a, kh)d. (34)
Since
i n—l (k—i—l 8@ T t)
> /Q ui () [p(a, k) — o (&, (k + 1 /Q ] .

kZ/k:H / )d dt
/0 /Quh )d dt

T
- — / / u(z dmdt as h— 0, (35)
0 Q

Py / B(Vuup — O(un)) (@, kh) - Vool kh)dz
k=17

T
= / / O(Vuy, — 0(up)) (z,t) - Vo (x,t) dadt
/ o / (Vup — 0(up,) (x,t) - (Vo (x,kh) — Vo (z,t)) dedt

N /0 /Qg -V(z,t)dzdt as h — 0, (36)

hkzl/ﬂ[f]h(x,(k:—l)h) ¢ (x,kh)d / o /f © (@, kh) dzdt

%/ /fgpdxdt as h — 0, (37)
0 Jo

hZ/ a(ug) ¢ (x, kh) dz

/ / a(up (x,t)) ¢ (z,t) dedt — Z/ o / a(up) (¢ (z,t) — @ (z, kh)) dadt

—>/ / u)edzdt as h — 0, (38)
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then all these relations, by letting A — 0 in , yield

/ / dxdt—/ o(z)e(x de—l—/ / godxdt—i—/ /§ Vdzdt
_ /O /Q Feodzd. (39)

If we choose ¢ € C°(Q), we get

/ / 9P dadt + / / w)pdadi+ / / ¢ Vddt = / / fodzdt.  (40)

This implies that 6“ e LV (0, T;W—bv (Q))

Next, we prove £ = ®(Vu — 0(u)) a.e. in Q. Let v € LP <O,T; WOI”’(Q)> NL> (0,T; L*()).
First we start showing that

lim / / (Vo — 0(up)) - (Vuy, — Vo)dzdt = / / (Vo —0(w)) - (Vu — Vo)dzdt. (41)

h—0

Set
T
/ / (®(Vo — 0(un)) - (Vin — Vo) dedt = Ay + By, (42)
0 Q
where
T
Ap = / / (®(Vv —0(up)) — (2(Vv —0(u)) - (Vuy, — Vo)dzdt,
B, = / / (Vo —0(u)) - (Vup, — Vo)dzdt.
By applying again Holder’s inequality, we get
[An| < [[@(Vv = 0(un)) = @(Vo = 0(w))| o () [ Vun = Vol Le(q)-

By hypothesis (H3), we have

/ /|9 up) pdxdt</\p/ /\uh—u|pdxdt (43)

In (31)), O(up) — 6(u) strongly in LP(Q), which implies that ®(v — 0(uy)) — ®(v — 6(u))
strongly in L¥' (Q). Using (3 ., we obtain

lim Ay, = 0. 44
hlg})ho (44)

On the other hand
lim By, = / / (Vo —0(u)) - (Vu — Vu)dzdt. (45)
h—0

Hence

T T
lim / /Q (®(Vo — 0(up)) - (Vuy, — Vo)dadt = /0 /Q (®(Vo — 0(u)) - (Vu — Vo)dadt. (46)

h—0 Jo
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Now summing up the above inequalities , for k =1,...,n, we have

1 T T
/u%(T)dx—l—/ /@(Vuh—ﬂ(uh))-Vuhdxdt—}—/ /a(uh)uhdxdt
2 Jo 0o Ja o Ja
r 1
</ /fuhdxdt—l—/u%dx. (47)
0o Ja 2 Ja

O (Vup, — 0(up)) - Vup, = [2(Vup, — 0(up)) — (Vo — 0(up))] - (Vup, — Vo)
+ ®(Vup, —0(up)) - Vo+ @(Vo — 0(up)) - (Vup — Vo),

Since

then from Lemma [3] we obtain
O (Vup, — 0(up)) - Vup, > ©(Vuy, — 60(up)) - Vo + (Vo — 0(up)) - (Vup, — Vo).

This implies, by using , that

T T
1 / uddz + / / fupdaxdt 21 / up (T)dx + / / (®(Vup, — 0(up)) - Vodadt
2 Jo 0o Ja 2 Jo o Ja
T
/

T
+/
0

;/Quod$+/ /fudxd ;/QUZ’(T)dH/T/g.de

—|-/ / (Vv —0(u)) - (Vu — Vo)dadt

/ / wudzdt, (48)

Now if we choose u as test function in , we get

/ T)dx + / / w)udzdt + / / € - Vudzdt = /0 ' /Q fudmdt+% /Q uddz. (49)

Combining with , we obtain

_|_

(®(Vv —0(up)) - (Vup, — Vou)dadt

a(up)updxdt.

S~ 5—

/ / (Vo —0(w))) - (Vv — Vu)dzdt < 0.

Choosing v = u— AV, where A > 0 and ¥ € LP (O, T; Wol’p (Q)) NL> (0,T; L*(£2)), in the above
inequality to have

T
/ / (€ — @ (u— AT — 0(u))) - Vdadt > 0.
0 Q
Passing the limits as A — 0" and using Lebesgue’s dominated convergence Theorem, we deduce

/ / ¢ —®(u—0(w)) - pdzdr >0, Vi € <Lp (O,T; Wl (Q)) N L (0, T; L2(Q)))N
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This implies that £ = ®(Vu — 0(u)) a.e in Q. Hence, by (40)), we conclude that

/ /udxdt—i—/ / @dxdt—i—/ / (Vu — 0 (u)) - Vedadt = /OT/Qprdacdt.

Recalling the fact that u € LP (o, T, WP (Q))mLOO (0,7; L*(Q)) and 2% € L¥' (o, T Wl (Q))

from the equation, we conclude that u belongs to C' (O, T; L? (Q)) , which completes our proof of
the existence of the weak solutions of the problem ().
The proof of the uniqueness of the solution of the equation is similar to the proof of Theorem
3.3 in |[El Hachimi et al. | (2010) and so it is omitted.
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